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A model has been constructed for a mixing layer of a rotating fluid with a large 
Reynolds number which is an analogue of a mixing-layer model for a plane flow 
widely used in the literature. The angular velocity profile in such a model has the 
form : 

Q(r) = t(Q+Q)-+(Q-@)tanh -1n- , 

where r is the distance from the rotation axis; and R, Q,2,  and D are the model’s 
parameters. The model permits a relatively simple analytical study of the stability 
for two-dimensional disturbances. It is shown that the stability is defined by the 
‘shear-width’ parameter D, namely the model is unstable when D < Dcrit = t. In a 
weakly supercritical flow (ID-DcriJ l),  one mode with azimuthal number m = 2 
develops. In this case two vortices are produced in the vicinity of a critical layer (CL), 
i.e. a radius where the wave’s azimuthal velocity s2, coincides with the rotation 
velocity Q(r) .  A study is made of their nonlinear evolution corresponding to different 
CL regimes: viscous, nonlinear, and unsteady. It is found that the instability 
saturates at a low enough level and the equilibrium amplitude depends on the degree 
of supercriticality ALI = ~D-DCriJ, but the character of this dependence is different 
in different regions of the supercriticality parameter ALI. 

It is shown that, despite the specific form of the velocity profile in the model under 
consideration, results concerning the critical-layer dynamics have a high degree of 
universality. In particular, it becomes possible to formulate the criterion that the 
instability will be saturated at a low level for an arbitrary weakly supercritical 
flow. 

(; ;) 

1. Introduction 
Models of plane-parallel mixing layers and, in particular, those with a velocity 

profile u = tanh y that have been widely used in the literature have one serious 
shortcoming as regards the possibility of providing a correct formulation of the 
problem of nonlinear stability within the framework of weakly nonlinear theory. The 
point here is that, for any plane mixing layer, there exists a critical wavelength, 
which in order of magnitude equals the thickness of the shear layer, such that modes 
with longer wavelengths are unstable. Thus, for the profile u = tanh y this critical 
wavelength is A,, = 27c/k,,, where k,, = 1. Every perturbation with k < 1 is unstable, 
and the largest growth rate approximately corresponds to the middle of the interval 
(0.1) and is not small, i.e. of order of magnitude unity (for more details see Michalke 
1964). By invoking the method of the weakly nonlinear Stuart-Watson theory, a 
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large number of authors have to resort to an artificial formulation of the problem and 
confine attention to the evolution of a mode with wavenumber k close to k,, (Schade 
1964; Huerre 1980, 1987; Benney & Maslowe 1975; Robinson 1974; Huerre & Scott 
1980; Churilov & Shukhman 1987~).  Also, one has to discard deliberately the fact 
that the system involves more unstable modes with smaller k ,  and this will inevitably 
distort the picture obtained. 

It is clear that the above difficulties are avoided in the case where excitation of 
longer than critical wavelengths is prohibited. Such a situation naturally occurs with 
an axially symmetric mixing layer of a rotating fluid - there exist no perturbations 
with an azimuthal wavelength greater than 2nR, where R is a certain typical radius 
on the flow profile. It is understandable that, if a weakly supercritical regime is 
possible in such a model, then it corresponds to excitation of a mode with the smallest 
m, i.e. m = 1. However, as more detailed analysis shows, the m = 1 mode is stable 
and, therefore, as it passes through the stability threshold, the m = 2 rather than 
m = 1 mode arises. 

Thus, for the case of a rotating fluid the problem of nonlinear development of 
perturbations can be correctly formulated and solved in terms of a weakly nonlinear 
theory. We shall obtain evolution equations and shall follow the growth of 
perturbations from very small initial amplitudes up to stabilization of an instability. 

Here, it seems appropriate to mention that, apart from that mentioned above, 
there is another factor that places constraints on the validity range of the evolution 
equations obtained in the papers cited above, for a plane flow with the profile 
u = tanh y to flows with an arbitrary form of the profile. The point here is that, within 
a mixing layer with the profile u = tanh y, the critical layer that coincides with the 
inflection point y = 0 is also coincident with the symmetry point of the stream 
function. This leads to the fact that we cannot regard this case as a general one but 
rather, on the contrary, it is degenerate. Formally, this implies the possibility of 
introducing a real phase jump of the logarithm (as e.g. in Huerre & Scott 1980) or 
terms with the second time derivative for the regime with a nonlinear critical layer 
appearing in the evolution equation (as in the Benney & Maslowe’s 1975 paper). 
These manifestations of symmetry of the profile u = tanh y are non-existent in the 
general case. With the model of an axially symmetric flow it becomes possible to 
avoid this degeneracy typical of a plane model with an antisymmetric velocity 
profile. A typical feature of the critical layer (CL) that does not coincide with the 
symmetry point, is its displacement along the direction of unperturbed velocity 
variation, in other words, there occurs not only a nonlinear growth of amplitude but 
also a nonlinear variation of the wave’s phase velocity. Therefore, investigation of 
the weakly supercritical mixing layer of a rotating fluid is quite instructive in the 
study of nonlinear dynamics of critical layers because such a model combines all 
typical features of critical layers. 

This paper is organized as follows. Section 2 gives results on linear theory of 
stability. In  $3, we shall obtain the evolution equation for the amplitude and phase 
(or more specifically, for the phase velocity) for the viscous and nonlinear regimes of 
the critical layer. An analysis of these equations is made in $4. Section 5 investigates 
the regime of an unsteady CL as well as the transition from this regime to the regime 
of a nonlinear CL. Section 6 discusses the results obtained and provides an 
interpretation of the mechanism for nonlinear stabilization as well as offering a 
criterion for the low level of instability saturation for models with a sufficiently 
arbitrary velocity distribution. 
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2. Linear theory 
We start from the equation for the stream function 

where $oo corresponds to an unperturbed flow, and the last term on the right-hand 
side describes forces which give rise to the flow 

1 aaab 1 aa ab {a b } =  _ _ _ _ _ _ _  
' r + a r  r & + '  

Assuming the Reynolds number to be very large, we drop the right-hand side of 
(2 . l ) t  and linearize the equation. Assuming 

we get 

Here 

are the angular velocity and vorticity of the unperturbed flow. For the subsequent 
calculations, it is convenient to use the variable y = In ( r /R )  instead of r :  

where Coo = Q'(y) + 2Q(y), and the prime denotes a derivative with respect to y .  Upon 
imposing the boundary conditions 

$ + o  as y + + m  (2.4) 

we get a problem that is very close to the problem of a plane free mixing layer, with 
the exception that here the relation of &(y) to Q(y) is different from that holding for 
a plane flow, where Go = u". It is clear that, as in the plane case, neutral modes (and, 
therefore, the instability) are possible only in the presence of vorticity extrema, 
where G,,(y) = 0;  however, these points now do not coincide with the inflection 
points. In  the case of an arbitrary profile Q(y) the solution of (2.3) is a task for a 
computer, but one may try to find a model that is solvable analytically. Therefore, 
it would be natural to attempt to use the following model: 

as such a reference model, in analogy with the plane case. It is easy to verify that, 
for such a model, the Sturm-Liouville problem for determining the neutral modes is, 
indeed, solved straightforwardly to give the following result : 

t Of course, viscosity will be taken into account when solving the inner (i.e. within the CL) 
problem. 
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FIGURE 1. The regions of stability and instability (hatched) in linear theory. 

m 

1. phase velocity of neutral modes 

(2.6) 
1 

s2p = 5 2 y ,  52gl) = t(sz,+Q)-2m(q-q) 

(index n denotes a neutral mode) ; 
2. neutral curve 

(2.7) 
1 
m 

D = D , = - ,  m =  1 , 2 , 3  ,...; 

3. eigenfunction of the neutral mode 

&(Y) = sech (my) ; (2.8) 

4. corotation radius yen, where 52 = SZ, (in other words, a critical level) is defined by 
the equality 

(2.9) 
1 

tanh (my,,) = -. 
m 

The vorticity minimum lies a t  this point if the angular velocity is outwards 
(A52 = q -4 > 0), and a maximum is present if A52 < 0. Note that ycn does not 
coincide with the inflection point of the profile Q(y) ,y  = 0, unlike the analogous 
plane model; however, as in the case of a plane model, y,, is a regular point. 

Thus, when the parameter of the shear width Df is equal to the value of 1/M, then 
the mode with this value m = M is a neutral one. From physical considerations it is 
quite clear that modes with smaller m, then, are unstable, while those with larger m 
are stable (see figure 1). 

Now, let us calculate the increment and the correction to the phase velocity of the 
wave for a small deviation of D from its neutral value, i.e. when D = D,+AD. 
Assuming = In, + S%, where 8% = (A%), + (i/m) yL and using a standard 
perturbation procedure with the use of the Lin indentation rule, we obtain, for the 
increment yL and the correction to the wave’s phase velocity 

(2.10) 

(2.11) 

t The physical shear width is related to the parameter D by the relationship AR - R sinh (0). 
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FIQURE 2. Streamlines for the neutral mode m = 2 in a frame reference rotating with 
phase velocity q. 

and !B1 and represent phase jumps of the logarithms arising when the indentation 
rule is being employed. As is known, linear theory gives 

From (2 .10)  it is evident that the increment is positive as All < 0, as one might 
expect. From (2.11) it follows that for the case of a decreasing angular velocity 
(A52 > 0) the phase velocity for the unstable mode is larger than the neutral-mode 
phase velocity, and vice versa. 

Let us examine the m = 1 mode. For it, yL = 0, i.e. it remains neutral even with 
a decrease of D from the value of 06') = 1 .  More detailed analysis of this mode reveals 
that this is a neutral mode for any D .  The relevant eigenfunction has the form 

= @. = -n.t 

(2.12) 

and for any D < 2, it satisfies the boundary conditions. Thus, a critical value that 
separates stable flows from unstable flows, is the value of Dcrit = + (rather than 
Dcrit = 1, as one might anticipate from the neutral curve only). 

In the weakly supercritical case of interest in the subsequent discussion the 
m = 2 mode arises. In this case near the corotation radius ( r  = 3fR), a system 
of two vortices appear, anticyclonic if A52 > 0 and cyclonic if A52 < 0 (figure 2). 

It is useful to remember that in an unstable Aow the critical level no longer 
coincides with the position of the vorticity extremum but is separated from it by the 
interval Ay = (AD+2(Al&/A52) q-l so that at  the critical level Go + 0 (see figure 3), 
and the instability increment is proportional to the value of Go at the critical 
level. 

t We have introduced deliberately two different designations for phase jumps of the sine and 
cosine part of the wave because in nonlinear theory they will represent two different functions of 
amplitude (aee the next Section). 
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FIGURE 3. Schematic representation of the unperturbed vorticity profile. 
(The y,-coordinate corresponds to the initial position of the critical level.) 

Y L  

FIGURE 4. Amplitudesupercriticality diagram : I ,  region of a viscous CL ; 11, region of an unsteady 
CL; 111, region of a nonlinear CL. The boundaries of regions I, I1 and I11 are indicated by a heavy 
line. The saturation amplitude as a function of supercriticality is shown. 

3. Evolution equations for the regimes of a viscous and nonlinear CL 
A dominating factor that determines the course of the nonlinear evolution is the 

rearrangement of the critical layer. For an equation of the form (2.3) (i.e. with a 
singularity of the first-order-pole type) a classification of critical layers is shown on 
the amplitude-supercriticality diagram (figure 4). According as which of the three 
scales is greater: 1, = vf, 1, = y ,  or I ,  = At, the critical layer can be a viscous, 
unsteady or nonlinear one, respectively. 

We wish to follow the evolution of an initially small perturbation, whose 
amplitude in the initial stage corresponds to the lower part of the figure 4 diagram. A 
distinction should then be drawn between two cases. In  the first case supercriticality 
corresponds to the region of a viscous CL, i.e. yL < vi, and in the second case it 
corresponds to the region of an unsteady CL, i.e. yL > vf. (Here we are already using 
dimensionless quantities, by measuring time in (AQ(-' units and viscosity in ]AQl R2 
units.) The character of the perturbation growth is different in each case. In this 
Section we shall study the evolution of the perturbations that start from region I, i.e. 
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from the region of a viscous CL. However, we shall see that, even when starting from 
region I1 (of an unsteady CL), the perturbation, as it evolves, reaches region I11 (of 
a nonlinear CL) so that the equations to be derived in this Section are applicable to 
region I and to the whole of region I11 of the diagram, and not only to the part lying 
above the region of a viscous CL; but it does not involve the description of the 
transition from I1 to 111. The evolution of a perturbation starting from region I1 will 
be considered in $5. 

Now, we begin to derive the evolution equations. We put 

where E is a small parameter characterizing the perturbation amplitude, 4 < 0. The 
derivation procedure has been described in several papers. A detailed description 
may be found in, for example, Churilov 87, Shukhman (1987a). We shall give a brief 
description. The solution of (2.1) is sought in the form 

$ =  ?P+$oo+~cr 

m (3.1) 
y = $J7, y )  &ml(v-QIlt) 

l--oO 

where $l = gPl ,  the overbar denotes complex conjugation, m = 2 (in the case of 
interest), cr = sgn (AQ), and 

$oo = Ie”Q(y)dy = Iezg[C&+,(;-tanh(g))]dy. a 1  

The functions $c.l are sought in the form of an expansion into a power series: 

= €$hi’) + 2$p’ + . . . , 
$h2 = &2$P’ + . . . , 
$o = s2@ + . . . * 

A t  O ( s ) ,  for the fundamental harmonic we obtain 

$?) = A(7) sech (my) = A(7)q~,(y),  

where A(7)  is a complex amplitude of the wave which is convenient to represent by 
separating in explicit form the modulus and the argument : 

~ ( 7 )  = q-fc(7) e-imX(T). (3.2) 

The evolution equation will be obtained for the real amplitude C(7) and phase 
0 = m(p-~(7) -SZ, t )  or more exactly, for the addition to the wave’s phase velocity 

dX o(7) = -. 
d7 

At 0 ( e 2 )  of the fundamental we obtain 
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u 
where !Po) = -- qppyz + 2c cos 0, 

PI) = -- P - - c y c O s  e, 

\ 
4rn 

U 2 
6m2qp m 

~ ( 1 )  = z( I --$) q p ~ 4 -  (1 -$) CP cos 8 + a r ) ~ 2  cos 20, 

p;) = -- 30m4 q p P  +&( 5 -2) Cy3 cos 0--C2YA( Y) cos 28 

24m 

U 16 

UP 

(A(Y) - l ) -b*Cq  
1 

where 

> (3.7) 

Owing to singularity at point z,, where tanhz, = m-l (3 .3 )  must be solved separately 
to the right and to the left of the CL, and then the solutions must be matched, by 
solving preliminarily the problem inside the CL. For $?) we get 

@?)(Z) = n * A v , ( ~ )  +v,(z) (F$2) (~) -b* )pa2( s )  ds, (3.4) Lc 
where a*(?) and b i ( 7 )  are unknown coefficients derivable from the inner problem, 
and 

Fi2)(z) = [v,(s) &v)(s) ds. 

From this, bearing in mind that $?) -+ 0 as z + f 00, we obtain the so-called modified 
solvability condition (MSC) : 

F ~ 2 ’ ( 0 O ) - F ~ ) ( - m )  = (b+-b- )A,  
or in explicit form 

(b+-b- )A = (3.5) 

From the outer solution, apart from the MSC (3 .5) ,  we also require the inner 
asymptotic expansion, i.e. one for z-tz, .  Assuming x-z ,  = EY, we write the final 
form of this asymptotic expansion in explicitly real form : 

y = e( y(0) + &y& + + g % y @  + * .  -1, (3.6) 

m + l  
p = exp (2z,,m) = - 

m-1’ 
Here A(Y)  = In (qdly). 

Let us now examine the inner region. We put 

y =  &?I= E ( ~ ( o ) + , ~ ~ ~ ) + e ~ ( ’ 1 ’ f E ~ ~ < b +  ...). 
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For @, we obtain the equationt 

Here 4, = e-*'d2/dy2 is the radial part of the Laplace operator, 

433 

and the prime indicates the derivative with respect to Y. 
In  the model considered we have 

(d, Q 0 ) c  = p-'"q2m3, (4 coo) ;  = - 8P-1".2m2. 

From (3.8) we get !@O) = Po), @$) = Pi), and @l) = Pl), and r3r 9;) we c,tain 
the equation 

1 dC 
4q [ dr  

= --qC2sin28+- cos8-+mC(w+l&a)sine , (3.9) 
16 
m l n z  p 

where (3.10) 

Equation (3.9) must be solved with the asymptotic behaviour 

16c2y-1cosze+y-1 4 Q+- ccose--- 8 dC { ( :) m a d r  P" 
d -  -- 

With the aid of (3.7) and (3.10) we rewrite the MSC (3.5) as 

4m 
([cosO)dY = 

{([sinO)dY = 4 dC 
pma dr  ' 

(3.12) 

(3.13) 

t Note the presence of the third derivative of unperturbed vorticity on the right-hand side of 
( 3 . Q  with which - as will be shown later in the text - the stabilizing effect of nonlinearity, in the 
presence of viscosity, will be associated. 
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Here 
T 

dY(. ..) = lim J-TdY(. . .), (. . .) = 
T+w 

Thus, (3.9), (3.12) and (3.13) are a starting system of equations for obtaining the 
evolution equations, i.e. the equation for the amplitude C(7) and the addition to the 
phase velocity w ( 7 ) .  On solving (3.9) with the asymptotic behaviour (3.11) and 
substituting into (3.12) and (3. l?), we obtain the desired evolution equations._ 

The procedure of determining cfrom (3.9) and evaluating the integrals J (csin05) dY 
and j(y"cos0)dY involved in the MSC, is deferred to the Appendix. We give the 
outcome 

(3.14) 

{(csinB)dY =-4Cv (3.15) 

It should be noted that the contribution involving G3 is due to taking account of 
cubic expansion terms of unperturbed vorticity near the CL or, more exactly, of 
linear expansion terms from the Laplacian of unperturbed vorticity 

- (4500):(9-YC). 

One may trace from the beginningt that the coefficient of C2G3 in (3.15) is, in fact, 
proportional to the value of (4 [oo)h, i.e. 

A = - = -  (3.16) 

In (3.14) and (3.15) y(7) = (dC/d.r) C-', and p = qp/2m, while Gl(x), G2(x), and G3(x) 
are certain universal functions, the first of which is related to the known function of 
phase jump as obtained by Haberman (1972), i.e. Gl(x) = Q(d), where %(A,) is the 
Haberman function, and G2(x) and G.(x) are two new functions which arise owing to 
the difference of equation (3.9) from a corresponding equation of Haberman's paper 
in that the right-hand side of (3.9) involves terms with cos 0 and sin 20, respectively. 
(The function G3(x) has also been obtained in a recent paper by Churilov 1988.) We 
give the asymptotics of these functions corresponding to regions of a viscous CL 
(G/yi 4 1 ,  i.e. x 4 1) and a nonlinear CL (C/$ % 1, i.e. x 9 I): 

(3.17) 
-x+I,,x2 at x <  1 ,  I,,=6.42 

at x B 1,  = 0.621x,f @ I W  = 

t Kote that in this case the first three terms involved in the formula for !Pi) in (3.7) which are, 
respectively, the expansion terms of the unperturbed stream function, the eigenfunction of the 
neutral mode and the eigenfunction of the second harmonic, will be written as 

while the term involving sin28 on the right-hand side of (3.9) will be written as 

$ Haberman (1972) gives for 4 a correct analytical expression in the form of an integral; 
however, this integral was not correctly evaluated numerically. 



Weakly supercritical mixing layer in a rotating juid 435 

4 x 3  a t  x <  1,  I4 = 1 . 1 2 ~  
= {hx-; a t  x % 1 .  4 = 4.26. 

(3.18) 

(3.19) 

Substitution of (3.14) and (3.15) into (3.12) and (3.13) gives the evolution equations 
(which we write in physical variables 

t = T I E ,  B = E C ,  A% = EW, and ALI =eDJ 

and the nonlinear increment yN(t) is 

(3.20) 

(3.21) 

(3.22) 

where x = B(t)/(v2p)i. (It should be borne in mind that q ,  p,  p, and p are constants 
which in the case of the mode m = 2 under consideration are q = 4; p = 3 ; ,u = 0.41 12 ; 
and p = &). 

The expression (3.22) for the increment requires a comment. If for the moment the 
contribution involving is neglected, then we shall see that the difference of the 
nonlinear increment from the linear one (2.10) lies in the replacement of phase jumps 
G1 = - x and and 

decreases the increment but does not make it zero. The situation is altered if the 
contribution involving is taken into account. It has a negative sign in the present 
case and gives the stability. We again remind the reader that the origin of this 
contribution is attributable to taking account of cubic terms of the expansion of 
unperturbed vorticity near the singularity, and which becomes important as the 
amplitude grows and the CL increases in width. In $6 we shall attempt to explain the 
physical sense of this stabilization. 

= - 7c by their nonlinear values. Such a nonlinear reduction of 

Next, we examine the evolution of the perturbations in greater detail. 

4. The evolution of perturbations in regimes of a viscous and nonlinear CL 
Equations (3.20)-(3.22) derived above permit us to study the dynamics of 

perturbations from the initial small level to stabilization of the instability. 

4.1. The regime of a viscous CL (B + vi, yL Q vi) 

For the regime of a viscous CL, with the help of (3.17)-(3.19) we get 
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where 

are the increment and the addition to phase velocity in linear theory. In the regime 
of a viscous CL, the cubic nonlinearity involved in (4.1) is not competitive (i.e. the 
cubic nonlinear term is much smaller than the linear one) and nonlinearity BS is a 
dominant nonlinear effect. It has a stabilizing sign and bounds the amplitude growth 
at  the level 

BLi\ = 1.15(yLv2)a. (4.3) 

At the saturation stage the phase velocity is 

= (%)sat = q+(A%)sat, ( A q ) s a t  = c(i-y) I ~ I  = - 0 . 6 0 ~ 1 ~ 1 .  (4 .4 )  

From (4.3) it follows that stabilization does, indeed, occur in the regime of a viscous 
CL, i.e. I?::\/$ < 1, only for supercriticalities y L  < 6. When yL > d, nonlinearity 
becomes insufficiently strong so that the perturbation goes over into the regime of a 
nonlinear CL : 

4.2. The regime of a nonlinear CL (B 9 vt) 
In this region, the evolution equations obtainable with the aid of (3.17)-(3.19) have 
the form 

The evolution of perturbations in the case y L  > vg (but y L  < f )  looks like this. The 
amplitude actually grows exponentially with growth rate y L  up to the boundary with 
the nonlinear CL, i.e. B - $because here nonlinearity still is not competitive. As the 
amplitude reaches values corresponding to the nonlinear CL, but still is far from the 
saturation amplitude B = Bg\, 

the growth rate decreases: y +  yL(v/18). In  this case the variation of amplitude 
becomes a power-law: B - ti and the correction to the phase velocity assumes the 
value 

Finally, when the amplitude reaches values of B - yL,  the growth becomes slower 
and the amplitude arrives at its final value I?::\. The phase velocity also assumes its 
final value (4.4).  

It is interesting to follow the displacement of the critical level whose position is 



Weakly supercritical mixing layer in a rotating j h i d  437 

Y L  IA I 

(b) 

I 

(YL 4 IAl 

FIQURE 5. Phase velocity 4 as a function of amplitude (u > 0): (a) yL > vi; (a) yL < $. 

related to the phase velocity by the relationship SZ, = Q(y) .  During the course of its 
evolution the critical level is displaced along y the distance 

where ysat and y L  are the final and the initial positions of the critical level, 
respectively. The critical level is displaced to the side of the rotation axis, irrespective 
of the sign of the angular velocity gradient a. The phase velocity decreases as 
compared with the linear value for the case of a falling angular velocity (a  > 0) and 
increases if the angular velocity grows outwards (a < 0). The dependence of the 
phase velocity on amplitude is shown in figure 5. 

4.3. The intermediati region (B - vg) 
If supercriticality assumes intermediate values, i.e. yL - vi, the saturation amplitude 
finds itself at the boundary of the viscous and nonlinear CL regions. It is defined by 
the relation yN = 0 which is convenient to write as 

(4.10) 

where x = l$g,,/(pvz))'. In order to determine numerically eat in this intermediate 
region, it is necessary to know the functions G1(x) and e8(z) for values of z of the 



438 I .  G .  Shukhman 

order unity. For the function G3(x), we have no such information available, although, 
in principle, G3(x) can be calculated for all x. However, the picture is quite clear 
qualitatively without these calculations as well. In figure 4, the saturation amplitude 
as a function of supercriticality yL is plotted for all values of yL, including those in 
the intermediate region yL - vi, where qat - vg. 

To conclude this Section, we wish to note that, strictly speaking, the results 
obtained here refer only to the part of the figure 4 diagram for which yL < 6, i.e. to 
the left of the dashed line. However, we may also continue the saturation amplitude 
curve l$at - yL into the region yL > vi  because, as will be shown below, from the 
region of an unsteady CL (yL > vi) the perturbation also enters the region of a 
nonlinear CL and stabilizes at the level l$at - yL. 

5. The evolution of perturbations starting from the region of an unsteady 
CL regime 

In  this Section we shall consider the fate of a perturbation that starts from the 
region of an unsteady CL (region I1 on the diagram), i.e. from values of 
supercriticalities and initial amplitudes such that 

yL > vi, B Q y t .  (5.1 f 
One should distinguish two cases here : one with no viscosity a t  all, and the other with 
some, though small viscosity present. TF first case actually means that even a small 
initial amplitude exceeds the value of vs, i.e. the triple point on the diagram (where 
all three regimes border each other) can, actually, be transferred to the origin of 
coordinates. Clearly, the second case is physically more interesting ; however, 
investigating a limiting situation corresponding to the total absence of viscosity is 
useful in the sense that a substantial part of the evolutionary stage of the 
perturbation, even in the presence of small viscosity, will be occurring as if it were 
non-existent, and only for larger times does it become important. 

In the inviscid case we expect a limitation of the amplitude growth a t  a level 
corresponding to the boundary between the viscous and nonlinear CL, i.e. when 
B - y;. Such an expectation is based on a plasma-hydrodynamical analogy between 
the problem at hand and the problem of the growth of a monochromatic electrostatic 
wave in a plasma which is driven by an electron beam ; this latter problem has been 
solved previously by two groups of authors: Fried et al. (1970) and Onishchenko 
et al. (1970). We have already exploited this analogy in the problem of the nonlinear 
stability of a zonal flow on a ,&plane (Churilov & Shukhman 1987b). In  the problem 
of a zonal flow we were successful in establishing a one-to-one correspondence 
between the parameters of this hydrodynamical problem and the relevant parameters 
of the above-mentioned plasma problem; more specifically, we were able to 
demonstrate a total identity of the equation for absolute vorticity with the kinetic 
equation for the distribution function (for beam electrons). Once such a corre- 
spondence had been established, it became possible to extend to the problem of a 
zonal flow all plasma results obtained by solving numerically the kinetic equation in 
Onishchenko et aE. (1970) on a computer. It appears, however, that the problem of 
a mixing layer in a rotating fluid as treated in the present paper lacks such a simple 
correspondence with the previously solved plasma problem because in this case one 
encounters two fundamental differences which do not permit us to make direct use 
of the plasma results. One is that the problem of our interest involves the 
displacement effect of the critical layer during the course of the evolution which is 
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FIQURE 6. Illustration of two different situations of the plasma-hydrodynamic analogy : (a) for the 
case of the B-plane (Churilov & Shukhman 1987b), (b) for the case considered in the present 
work. 

absent in the plasma problem discussed. The other difference is thus. As we have 
already pointed out, the plasma-hydrodynamical analogy is based on the similarity 
of the equations for vorticity with the kinetic equation for the distribution function 
of particles. In  particular, from this analogy it follows that, while in a plasma the 
instability is associated with the difference from zero of the derivative of the 
distribution function (the increment is proportional to af/av a t  the resonance point), 
in a free shear flow it is proportional to the derivative of vorticity on the CL a[a,,/ay. 
But in the plasma problem cited above the position of the resonance region in 
velocity space corresponds to the middle part of the beam's slope and its width is 
much less than the distance from maximum f(v). A similar situation occurs on the 
/?-plane (Churilov & Shukhman 1987b). (Note that although, owing to small 
supercriticplity, the distance between two zeros of absolute vorticity gradient is 
small (O(yk)) in the /?-plane problem considered, the width of the CL is, however, 
much less than this distance.) In the present case, on the contrary, the position of the 
critical level is almost coincident with that of an extremum on the profile coo (see 
figures 3 and 6), i.e. its width is the same order of magnitude as, or greater than, the 
distance between the critical level and the vorticity extremum (whose order is 
O( yL)).-f Therefore it becomes impossible here to transfer automatically the plasma 
results, a8 in the @-plane case, so that one has to rederive the solution that would 
apply for the situation presented. 

In  this region of parameters a scaling that is somewhat different from that made 
in $3 should be performed. We put 

We write Y as ~ = e ( @ o ) + e ~ @ '  s)+e@(')+ . . .) and a t  O ( 2 )  of the inner problem 
obtain 

1 a t  at a t  P 4P d ---- (Y -  &) -+ 2Cp-l --2CaD1 -sin 0-- - (Ccos 0) = 0, 
m 2 &  2m ae ay m m2 d7 (5.2) 

t An analogy with plasma would correspond here to the case where the position of the resonance 
value of velocity lies slightly to the left of the f(v) maximum (figure 6). 
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where !@)"=y"+2 py2, Y,=rnz,Q.  

Using the replacement 

equation (5.2) becomes 

The solution of (5.4) must have the asymptotic behaviour 

8 dC 
F N - 4qC cos 8+ u@ (Y- Y, -:r + Y-l{ 4 (4 +$) C cos 8-- mu -sin d7 0 

2m 

On supplementing (5.4) with the solvability conditions 

4m 
2m 

(5.6) 
4 dC "'( 2m :y] ) pmu d7 

F+4qCcosO-cr- Y-Y,-- sin8 dY = 

we obtain the initial system of equations for investigating the evolution of 
perturbations in the regime with an unsteady CL as well as in the regime that is 
transitory between an unsteady and nonlinear CL, i.e. in the region of amplitudes 
B - y i .  It should be borne in mind that the position of the extremum of unperturbed 
vorticity in these variables corresponds to Y = Y,+D,/q, and the position of the 
critical level corresponds to Y = Y,(T) = - 20(7)/uq. Using the plasma analogy, 
equation (5.4) resembles the kinetic equation for the case where the wave velocity 
varies its value during the course of the evolution. This equation no longer contains 
any small parameters and should be solved numerically. 

To ease numerical solution it is convenient to use variables such that the position 
of the extremum of unperturbed vorticity corresponds to Y = 0 and the coordinate 
of the critical level and the growth rate in the linear stage are unity. It is convenient 
to measure the amplitude in units proportional to the square of the growth rate. 
Thus, we put 

and, on dropping the primes, we get 
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K(7) = 1 + n2p2 -I dY( (F + 2C cos 8- $TP) cos 0) .  
C s 

The system (5.7)-(5.9) must be solved with the initial condition 

F(0,  Y;7 = 0) = -2C(O)cos$+rry2 

44 1 

(5.9) 

2c(o) [ - npY sin 8 + (n2p2 + 1 - Y )  cos 01. (5.10) 
+ K 2 p 2 + ( Y - 1 ) 2  

The expression (5.10) (without the term N P) is an eigenfunction of the linearized 
problem inside the CL. Indeed, it is easy to verify that when 7 = 0 ,  we have 
C-'dC/d7 = 1, 5 = 1.  

In order to check the nun.drica1 calculation for correctness, it is useful to take 
account of the integral of the system (5.7)-(5.9) that expresses the law of conservation 
of energy : 

W(7) = -+ F+2Ccos8-ccr- Y d Y  = eonst. (5.11) 

Here the first term represents the energy of perturbations in the non-resonance part 
of the flow which is changed owing to rearrangement of the CL, which is described 
by the second term of (5.11). 

It is convenient to solve (5.7) by using Lagrangian coordinates in a phase space. 
By considering Y and X (where X = 8/2n) to be the coordinates of a particle having 
at  time 7 = 0 the coordinates Y,  and $, we find that F(X, Y ;  7) = F(X& y0;  7 = 0), 
where the particle trajectories are given by the equations 

c2 P f( '> 2 

2c(7) sin [2nx(&, Y,  ; 7)]. 
d 
-Y(&, &;7) = - 
d7 w 

(5.12) 

(5.13) 

Thus, the problem now is to integrate the particle trajectories with the initial 
conditions X(&, Y ,  ; 0) = 4 and Y(& Y,; 0) = Y, and to substitute, then, into the MSC 
(5.8) and (5.9): 

2c(o) 
[-np& sin (27djo) + (a2p2+ 1 - Y,) cos (27djo)l 

+ 7r2p2 + ( y, - 1 ) 2  

yC(7) = 1 + n 2 p 2 - L  r dY,f;d&cos (27cx)(. . .). 
C(7) -m 

(5.15) 

Here {...) in (5.15) denotes the same bracket as in (5.14), and 

E ( X ,  Y; 7) = 2c(7) cos [ 2 d ( & ,  & ; T)] -hp(&, Y,;  7), 

I$(&, y,) = 2C(O) cos (2ILq) -$a%. 

We integrated the trajectories of 181 x 21 particles that were originally positioned at 
nodes of a rectangular grid, with steps along $ equal to & and with steps along Y,  
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0 4 8 12 16 20 
7 

FIGURE 7. The results of a numerical solution of evolution equations (5.7)-(5.9) : (a )  amplitude C(7) ; 
(b )  increment y(7)  = C-'dC/d7 and the position of the critical level Y,(7). 

equal to 2Ym,/180, where Y,,, = 1Oqu. The steps in time were chosen equal to 
1/4000, and the initial amplitude was assumed to be C(0)  = 0.01. The results are 
given in figure 7.  

It is evident that the perturbation amplitude C in the initial stage grows 
exponentially as - exp ( 7 ) ;  after that, the growth becomes more slow and, upon 
reaching the level C,,, x 9, the amplitude starts to decrease, and this decrease again 
is replaced by the growth stage, etc. There arise amplitude oscillations around a 
mean value of C w 7. The calculations were ceased when 7 = 23, when the numerical 
calculation began to show substantial departures from the law of conservation of 
energy (5.11). On this time interval the amplitude does not yet show a tendency to 
assume a stationary value, as is the case for similar calculations reported by 
Onishchenko et al. (1970), but it is also possible that in our case too the amplitude 
oscillations will ultimately be damped completely and the amplitude will reach its 
stationary value Gtat. Nevertheless, the calculation we have done shows rather 
confidently that the stability sets in at the level Gtat x ( 6 9 ) .  In physical variables 
this saturation amplitude corresponds to 

Gat = 0.6~2,  Gat x (3-6) 7:. (5.16) 
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A physical mechanism for this stabilization is the phase mixing of liquid particles, 
each of which, in the absence of viscosity, carries its own vorticity. This mixing is 
produced owing to asynchronism of the motion of the particles along different 
streamlines. As a result, the vorticity profile inside the CL becomes severely jagged, 
which decreases the effective mean value of g. In plasma physics this mechanism for 
phase mixing is a well-known one, see e.g. Galeev & Sagdeev (1973), and Kadomtsev 
(1976). (For hydromechanics the effect of the decreasing scale over which the 
vorticity varies was demonstrated analytically by Stewartson 1978.) 

The picture outlines above is produced in the case where viscosity is totally 
neglected. Now, we shall take it into account. (Regrettably, the following treatment 
has a qualitative character, i.e. is without numerical calculations.) Viscosity gives 
rise to two effects. First, it removes the jaggedness on the vorticity profile. Second, 
it tends to impart to the vorticity profile inside the CL the same slope as in its 
immediate neighbourhood. The sign of this slope, on the average, is such that it 
coincides with the sign of the slope of the unperturbed vorticity that has caused the 
instability and, therefore, the perturbation will continue to grow, though slowly. As 
a result, the CL will become a nonlineart one and will, hence, be described by the 
equations derived in $4.2 for the nonlinear CL, i.e. equations (4.5) and (4.6). In the 
end, the amplitude will reach the level B - yL and the growth will stop. Thus, the 
main difference of the evolution of a perturbation that starts from the region of an 
unsteady CL (yL > &) from the evolution of a perturbation that starts from the 
region of a viscous CL (yL < &) lies in the fact that, in the second case, the amplitude 
grows monotonically, while in the first case it is accompanied by oscillations. In 
either case, however, the perturbation is stabilized a t  the level 2$at - yL when 
y L  > vi, or at  the level Gat - (yLv2)$  when yL < vg. 

6. Discussion 
Thus, we have shown that, in a weakly supercritical flow of a rotating fluid, 

equilibrium is reached a t  a low level that is proportional to a certain positive power 
of the instability growth rate yL. 

Let us discuss the physical meaning of the stabilization mechanism leading to the 
saturation level - yL.  This can be done with the aid of figure 8, showing on an 
enlarged scale the unperturbed vorticity profile near the minimum (to be more 
specific, we assume > 0). In the vicinity of this minimum lies the initial position of 
the critical level. For convenience, in figure 8 this minimum is placed a t  the origin 
of coordinates along the y-axis. The position of the critical level a t  the initial moment 
of time corresponds to yc = - (2(A!4JL + D ) / q  > 0. The instability in the linear 
stage (i.e. when the scale of the CL still is much smaller than its distance yc from the 
position of the unperturbed vorticity minimum) is due to the positive sign of the 
slope of the profile on the CL. What occurs later as the amplitude is growing ‘2 

From the calculations performed in $4 it follows that, as the amplitude reaches 
values corresponding to the nonlinear CL, the profile of mean vorticity is deformed 
in such a way that its minimum becomes coincident with the current position of the 
critical level. In  this case the growth rate diminishes, y+yL(v/@);  however, it 
nevertheless remains different from zero because viscous forces tend to impart to the 

j. More explicitly, this means that the nonlinear term will become the leading one (rather than 
of comparable importance to unsteady terms as before) and even viscous terms will be greater than 
unsteady terms, i.e. the hierarchy of terms will become such as in $4.2. 

15 FLM 200 
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FIGURE 8. Profiles of unperturbed vorticity and its derivative in the neighbourhood of the CL (the 
case u > 0). Dashes correspond to a purely quadratic approximation of the profile near the 
minimum. 

vorticity profile a slope which is dictated by the slope to the right and to the left of 
the CL. On the average (with respect to the CL width), this slope is positive because 
the critical level is shifted to the right of the position of the unperturbed profile 
minimum, and this leads to the fact that the amplitude growth, though a power law, 
continues. This stage is described by (4.5) and (4.6) without the contribution with 
4. If the unperturbed profile coo were a ‘pure ’ parabola, i.e. without the addition of 
cubic and other terms, then the perturbation would continue to grow according to 
this law to reach amplitudes of the order unity, i.e. to the limit where the validity 
range of weakly nonlinear theory no longer holds. Next, we take into consideration 
that the expansion of coo near the minimum involves cubic terms. This means that 
the profile Go deviates slightly from a straight line (with a positive slope). Let us 
further imagine that the separatrix is already so wide that the negative slope to the 
left of the ‘cat’s eye’ is able to compensate the positive slope on the right. Now, we 
determine what the sign of go must be and what value of the amplitude is needed for 
this. 

Let the unperturbed vortieity profile near the minimum be of the form 

coo = c o n s t + ~ o s + ~ ~ o s 2 + ~ ~ o ~ 3  (Go > O,Go > 0) (6.1) 

(the derivatives are taken at the point y = y,,s = y-y,). We again recall that 
ch0 - yL. Let L be the semi-width of the separatrix (L - O(&)). The balance 
condition for the slopes, then, means 

G o ( ~ c - - L ) + c ; o ( ~ L ? + ~ )  = 07 (6.21 
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where s, is a new position of the critical level. Taking into consideration that 
s, - O(yL), from (6.2) we get 

From (6.3) it follows that stabilization ip possible whenever go < 0. In  this case 
the width of the separatrix is L - O(ye), which corresponds to  the amplitude 
Qat - O(yL). The meaning of the condition go < 0 is clear from figure 8. Indeed, 
stabilization requires that taking into account the cubic terms in the vorticity 
expansion (or quadratic terms in Go) increases, in absolute value, the negative slope 
to the left of the CL and decreases the positive slope to the right, i.e. the profile Go 
must be convex upwards: (Go)" < 0. Taking into account the second variant when 
u < 0 (i.e. when [ko < 0 a t  the critical level), the criterion for the instability being 
stabilized a t  a low level may be written as: (&oGo)c < 0. The considerations 
presented here have a rather crude character ; they would be totally valid for plane 
geometry. For circular geometry, as an exact calculation demonstrates (see (3.22) 
and (3.16)), this criterion is modified to become 

yL - -gp. (6.3) 

It is this relationship of the signs that occurs in the model we have considered 
here. 

From the foregoing discussion it follows that the results obtained in this paper are 
not tied to the particular model but have largely a universal character. Only the 
coefficients in the linear relationships relating the instability growth rate and the 
phase velocity to the supercriticality parameter depend on the chosen model as well 
as the explicit form of the derivatives in the expansion of the vorticity profile on the 
CL of the form (6.1). These latter, provided that the criterion (6.4) is satisfied, 
determine the numerical value of the coefficient a in the relationship Qat = ayL. It 
is understandable that the reason for such universality is provided by the fact that 
perturbation dynamics is determined mainly by the flow rearrangement inside of the 
CL and does not depend on the flow structure as a whole. Such a property is inherent 
in all free flows with critical layers. 

I n  summarizing the foregoing treatment, we wish to make a remark concerning the 
region of very small increments, i.e. the part of figure 4 in which yL < vi. In  this 
region the amplitude equation (4.1) is inapplicable because it involves a stronger 
nonlinearity leading to the equation 

The origin of this nonlinearity was discussed in papers by Churilov & Shukhman 
( 1 9 8 7 ~ )  and Huerre (1987). As a result, in the region yL < vi the saturation level is 
found to be Bi:; - (yL v;);. 

I thank Dr I. I .  Pasha, together with whom the flow model considered here was 
found, and Dr. S. M. Churilov for numerous fruitful discussions. Special thanks are 
due to Mr V. G. Mikhalkovsky for his assistance in preparing the English version of 
the manuscript and for typing and retyping the text. 
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Appendix. Solving the equation for the inner region for the viscous 
and nonlinear CL regimes and calculating the integrals J(csin 19) dY and 
J( [cos 0) dY. 

origin of the functions Ql, 4, and Q3: 
The right-hand side of (3.9) involves three terms which are responsible for the 

Since (A 1) is linear with respect to t, then t can be divided into three contributions 
tl, t2, and c3, each of which obeys the equation with a relevant right-hand side. Let 
us consider three contributions separately. 

A.l. The contribution of t1, the function G1(x) 

Through the replacement c1 = cl+-(u+plu) 2qP Y 
m 

the equation for 5, becomes 

and Cl must have an asymptotic representation 

61 -- 2qp (0 + p1 c7) Y + O( Y-1). (A 3) m 

After an appropriate change of the notation, the problem (A 2) and (A 3) becomes 
exactly the one solved by Haberman (1972). Details can be found in the paper just 
cited ; we give here the result : 

j(tl cos6) d Y  = 0, 

where Ql(x) = G(d),  and &(A)  is the Haberman function. 

A.2. The contribution of t2, the function Q2(x) 

A.2.1. The limit of a nonlinear CL (C/q;  9 1) 

u), We denote p = qpp/2m, Z = ptC-iY, and t2 = &G. For G we have 
For definiteness, assume u > 0 (the final result (A 20) holds true for both signs of 
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and y /C  are small parameters, and In the limit of a nonlinear CL the quantities 
the smallness is of the same order of magnitude. We put 

K = Z2-4COS8, z = +(K+4COS6)t. (A 7 )  

I n  the variables 8 and K ,  (A 6) has the form 

Then, we proceed according to perturbation theory 

G = G(O) + G(l) + . . . . 
(A 9 )  G(0) = G(0) We have ( 1, 

where G(O)(K) still is an arbitrary function K ,  which we determine from the solvability 
condition of the equation for G(I). 

Outside the separatrix ( K  > 4) we obtain (indices e and i will henceforth denote the 
quantities taken outside and inside the separatrix, respectively) : 

where 

7 a aGL0) 2 y 
F - - Q ~ ( K ) ~ + - - - P ~ ( K )  @ a K  m C  = 0, 

For K % 1, we have a(.) = 27c~i(1 + O ( K - ~ ) )  and pe = - 2 n ~ - f .  From (A 10) we get 

where G0(7) is the ‘constant’ of integration. Note that, when K B 1, the asymptotic 
G(O) has the form 

In K (A 14) 
4y d 

($0) _ _ _  
m’I  

- 4  1 dC2 
[ = - - A ( Y ) - - .  

m 7 d2r 
or, in the initial variables, 

No such contribution is present in the asymptotic dictated by the solution of the 
outer problem. It appears that in order to  achieve an accurate matching of the zero 
harmonic, it is necessary to introduce an intermediate region, whose position 1 is 
determined from the balance condition for viscous and time-derivative terms, i.e. 
a/& - w / 1 2 ,  whence we have 1 - (w/y)i - (~ i /e ) i  - & (it must be recalled that the CL 
width is O(&)) .  We have already faced the need to introduce the intermediate region 
for a correct matching of the zero harmonic in previous papers (Churilov & 
Shukhman 1987a, b) .  However, it is no longer necessary to do these calculations in 
explicit form in the following. 

Next, inside the separatrix (-4 < K < 4) we have 
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where 

and the constant of integration Go is the same as in (A 13). This follows from the 
requirement of continuity of G on the ‘cat’s eye’ boundary, K = 4. As a result, we 
obtain 

{(& cos 8) dY = 4C-4 m [ - (py2)f 1 ,  {(&sinO)dY=O, (A 18) 

where 4 = 4+4, 

d2 s,’ $ { 9 [ ( 1 - :) K ( q )  + 7 E ( q )  = 4.26, I)’ - -- 
R 0 P2 q 

and W(x) and E(x) are complete elliptic integrals. 

A.2.2. The limit of a viscous CL (C/yf 4 1) 

result, (A 5) assumes the form 
Here it is convenient to use the variable x = kY, k = - (p/y)t = - (qp/2my)i. As a 

Calculations with a ‘viscous’ operator appearing on the left-hand side of this 
equation are more traditional and have already been given in a number of papers 
(Haberman 1976; Churilov & Shukhman 1987 c). The main nonlinear contribution 
here is due to the zeroth harmonic, i.e. to the distortion of a mean flow. Dropping the 
details, we give the result to an accuracy of terms cubic in amplitude: 

where 

/(c2cosO)dY = m 

{(c2 sin 8) dY = 0, 

IF(x)I2dx = n(#)fr(Q) = 6.42 .& = 
-m 

and F(x) is a solution of the equation F - i x F  = -i with the asymptotic F = 1/x 
when z+f  00. By joining (A 18) with (A 19), we finally obtain: 
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A.3. The contribution of c3, the function a3(x) 
Through the replacement 

- 4 a  1% 
Q = Q+-- Y~--G‘YCOS~ 

3 m 2 q P  m 

the equation for the function c3 becomes 

with the asymptotic 

c3-- - -  4 a  16q q2pP  + - CY cos 6. 
3 m  m 

A.3.1. The limit of a nonlinear CL 

equation (for definiteness, we again assume a > 0) 
Through replacements similar to those when calculating c2, (A 21) is reduced to the 

with the asymptotic G when K % 1 
G N f - y K B .  8 q  s 

3 mpz 

We have 

GlO) = G 0’  (A 26) 

The solution GIo) is obtained from the condition that no singularity is present a t  the 
centre of the ‘cat’s eye’. It is convenient to separate from (A25) the asymptotic 
(A 24) in explicit form : 

where the jump R+-R- ist 

It is easy to establish the relation of the jump R+-R- to the desired integral 
J (6 sin 6) dY. As in Haberman’s (1972) paper it is given by the relationship 

S(Gsin6)dZ = xp!(R+-R-) .  2@ (A 29) 

t The asymptotic as dictated by the outer solution, i.e. (A 24) involves no contributions of the 
form R* . A correct matching here again requires an intermediate region. 
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Finally, we obtain (for both signs of cr) 

A.3.2. The limit of a viscous CL 
Dropping the calculation, we shall give the result only. Here the main nonlinear 

contribution is also due to the distortion of the mean flow and is fifth order in 

where I, = - 4  ( ImF)( ImH)dx = 1.12n, L 
and the functions F(x) and H ( x )  satisfy the equations 

z d  
dx 

F - i x F  = -i, H - i x H  = i2-%-$'(2&), 

Upon combining (A 30) and (A 32), we get 

I (A 33) 
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